
Andl Grammar
This is version 4 of the Andl grammar, influenced by many sources. The compiler is hand-

written recursive descent, so this grammar may contain errors.

Notes

1. The symbols {}[]()+| are part of the EBNF and are not literals. Where used as

terminals the bracket symbols are shown as LC RC LB RB LP RP.

2. Other terminal symbols represent themselves.

3. EOL and EOF represent end of line and end of file. Not shown here are multiple points

in the grammar where optional EOL is treated as whitespace, and ignored. The final

EOL in a DO block is also optional.

4. The terminal CMA represents a comma separator within a repetition. A trailing

comma is permitted unless it would create an ambiguity.

5. Other uppercase words are terminals. In the language they are the same words but

in lower case.

Statements

main ::= {stmt EOL} EOF

stmt ::= deferred

| decls

| define

| update

| assign

| expr

assign ::= new-id := expr

decls ::= DEF { (user-type|connect) CMA }

user-type ::= : new-id LP decl-list RP

connect ::= new-id : DB LP [source-id] RP

define ::= new-id [arg-list] => (expr|update)

arg-list ::= LP decl-list RP

update ::= rel-id := tran-op

| rel-id := dyadic-op rel-expr

Expression and primary

do-block ::= DO LC {stmt EOL} RC

expr ::= primary {bin-op expr}

primary ::= sim-prim {trn-op|dot-op}

sim-prim ::= var-id // ident

| att-id // attribute

| lit-val // literal

| rel-val // {{ ... }}

| tup-val // { ... }

| func-call // ident(...)

| un-op sim-prim // - primary

| LP expr RP // (expr)

bin-op ::= infix-op

| cmp-op

| dyadic-op

dot-op ::= . dot-id

func-call ::= func-id LP {expr CMA} RP

| IF LP pred-expr CMA expr CMA expr

| FOLD LP fold-op CMA expr RP

func-id ::= builtin-id

| def-id

| win-func

lit-val ::= bool-lit

| num-lit

| text-lit

| time-lit

| bin-lit

Relation and tuple primaries

rel-val ::= LC {tup-val CMA}+ RC

| LC heading {LC {expr CMA} RC} RC

| LC LC * RC RC

tup-val ::= LC {(proj-term|ext-term) CMA} RC

| LC * RC

heading ::= LC {decl-term CMA}+ RC

| LC : RC

Transform operator

trn-op ::= LB [pred-term] [ord-term] [attr-expr] RB

pred-term ::= ? LP pred-expr RP

ord-term ::= $ LP {[%] [-] att-id CMA}+ RP

attr-expr ::= LC [*] {attr-term CMA} RC

attr-term ::= ren-term

| proj-term

| ext-term

| agg-term

ren-term ::= new-id := att-id

proj-term ::= att-id

ext-term ::= new-id := open-expr

agg-term ::= new-id := fold-expr

Types

decl-list ::= {decl-term CMA}

decl-term ::= new-id : type-term

type-term ::= type-id

| simp-prim

type-id ::= sys-type-id

| usr-type-id

sys-type-id ::= BOOL|TEXT|NUMBER|TIME|BINARY

Descriptive non-terminals

pred-expr ::= ? predicate expr of type BOOL ?

open-expr ::= ? expr that may contain an att-id ?

fold-expr ::= ? open-expr containing at least one FOLD ?

fold-op ::= ? any operator or function with exactly two

arguments of the same type ?

Descriptive terminals

new-id ::= ? ident definable in this scope ?

dot-id ::= ? name of single arg function ?

var-id ::= ? name of variable created by assign or define

?

def-id ::= ? name of function created by define ?

usr-type-id ::= ? name of user-defined type created by user-

type ?

Predefined names

builtin-id ::= ? name of builtin function including:

type text format pp length fill trim left right

before after toupper tolower now date dateymd

year month day dow daysdiff time count degree

schema seq read ?

un-op ::= ? unary operators including: + - not ?

infix-op ::= ? scalar operators including: + - * / ^ div mod

& max min ?

cmp-op ::= ? comparison operators including: eq ne ge gt

le lt and or xor = <> < > <= >= <> =~ sub sep sup

?

dyadic-op ::= ? relational operators including: join compose

divide rdivide semijoin rsemijoin ajoin rajoin

ajoinl rajoinr matching notmatching union

intersect symdiff minus rminus ?

win-func ::= ? window functions including: ord ordg lead lag

nth rank ?

source-id ::= ? a connection source, including csv txt con

file ?

Terminals

bool-lit ::= ? the literal values true and false ?

str-lit ::= ? string literal consisting of any sequence of

quote, squote, dquote or hquote ?

bin-lit ::= ? binary literal b’aabbcc’ where aa, bb... are

hex bytes ?

num-lit ::= ? digit string with optional decimal point ?

hex-lit ::= ? $ then numeric digit then sequence of hex

digits ?

time-lit ::= ? t'2015/12/31 23:59:59' where the date and

time are in the locale-dependent format ?

squote ::= ? '<any>' single quoted string (no escapes) ?

quote ::= ? "<any>" double quoted string (no escapes) ?

iquote ::= ? i’<any>’ as per squote ?

dquote ::= ? d’xx xx’ where xx are space separated Unicode

code points in decimal ?

hquote ::= ? h’xx xx’ where xx are space separated Unicode

code points in hex ?

ident ::= ? character string, first must be "a-zA-

Z_$@#^", subsequent may be "%&?!~`|" ?

| ? iquote followed by any sequence of quote,

squote, dquote or hquote ?

operator ::= ? one or two of " -+=<>:*~" ?

line ::= ? sequence of Unicode characters as provided by

input source, with all control characters removed

?

white ::= ? the space character (code 32) ?

comment ::= ? from // to end of line, treated as part of

EOL ?

EOL ::= ? token inserted to represent end of line ?

EOF ::= ? token inserted to represent end of input ?

